Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913978

RESUMO

The hallmarks of biological processes that underlie the development of cancer have been long recognized, yet, existing therapeutic treatments cannot prevent cancer from continuing to be one of the leading causes of death worldwide. This work was aimed at exploring the extent to which the cell-membrane proteins are implicated in triggering cancer hallmark processes, and assessing the ability to pinpoint tumor-specific therapeutic targets through a combined membrane proteome/cancer hallmark perspective. By using GO annotations, a database of human proteins associated broadly with ten cancer hallmarks was created. Cell-membrane cellular subfractions of SKBR3/HER2+ breast cancer cells, used as a model system, were analyzed by high resolution mass spectrometry, and high-quality proteins (FDR<3%) identified by at least two unique peptides were mapped to the cancer hallmark database. Over 1,400 experimentally detected cell-membrane or cell-membrane associated proteins, representing ~18% of the human cell-membrane proteome, could be matched to the hallmark database. Representative membrane constituents such as receptors, CDs, adhesion and transport proteins were distributed over the entire genome and present in every hallmark category. Sustained proliferative signaling/cell cycle, adhesion/tissue invasion, and evasion of immune destruction emerged as prevalent hallmarks represented by the membrane proteins. Construction of protein-protein interaction networks uncovered a high level of connectivity between the hallmark members, with some receptor (EGFR, ERBB2, FGFR, MTOR, CSF1R), antigen (CD44), and adhesion (MUC1) proteins being implicated in most hallmark categories. An illustrative subset of 138 hallmark proteins that included 42 oncogenes, 24 tumor suppressors, 9 oncogene/tumor suppressor, and 45 approved drug targets was subjected to a more in-depth analysis. The existing drug targets were implicated mainly in signaling processes. Network centrality analysis revealed that nodes with high degree, rather than betweenness, represent a good resource for informing the selection of putative novel drug targets. Through heavy involvement in supporting cancer hallmark processes, we show that the functionally diverse and networked landscape of cancer cell-membrane proteins fosters unique opportunities for guiding the development of novel therapeutic interventions, including multi-agent, immuno-oncology and precision medicine applications.


Assuntos
Neoplasias da Mama , Proteoma , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana/metabolismo , Medicina de Precisão , Proteoma/genética , Receptor ErbB-2/metabolismo
2.
Mol Cancer Res ; 19(8): 1338-1349, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811160

RESUMO

Epigenetic regulators can modulate the effects of cancer therapeutics. To further these observations, we discovered that the bromodomain PHD finger transcription factor subunit (BPTF) of the nucleosome remodeling factor (NURF) promotes resistance to doxorubicin, etoposide, and paclitaxel in the 4T1 breast tumor cell line. BPTF functions in promoting resistance to doxorubicin and etoposide, but not paclitaxel, and may be selective to cancer cells, as a similar effect was not observed in embryonic stem cells. Sensitization to doxorubicin and etoposide with BPTF knockdown (KD) was associated with increased DNA damage, topoisomerase II (TOP2) crosslinking and autophagy; however, there was only a modest increase in apoptosis and no increase in senescence. Sensitization to doxorubicin was confirmed in vivo with the syngeneic 4T1 breast tumor model using both genetic and pharmacologic inhibition of BPTF. The effects of BPTF inhibition in vivo are autophagy dependent, based on genetic autophagy inhibition. Finally, treatment of 4T1, 66cl4, 4T07, MDA-MB-231, but not ER-positive 67NR and MCF7 breast cancer cells with the selective BPTF bromodomain inhibitor, AU1, recapitulates genetic BPTF inhibition, including in vitro sensitization to doxorubicin, increased TOP2-DNA crosslinks and DNA damage. Taken together, these studies demonstrate that BPTF provides resistance to the antitumor activity of TOP2 poisons, preventing the resolution of TOP2 crosslinking and associated autophagy. These studies suggest that BPTF can be targeted with small-molecule inhibitors to enhance the effectiveness of TOP2-targeted cancer chemotherapeutic drugs. IMPLICATIONS: These studies suggest NURF can be inhibited pharmacologically as a viable strategy to improve chemotherapy effectiveness.


Assuntos
Autofagia/genética , DNA Topoisomerases Tipo II/genética , Nucleossomos/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Antígenos Nucleares/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
Adv Cancer Res ; 138: 1-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551125

RESUMO

Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...